1 0 0 2 2 g
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Agriculture, Ecosystems & Environment
Vol. 206, 2015, Pages: 46–59

Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions

Shamim Gul, Joann K. Whalen, Ben W. Thomas, Vanita Sachdeva, Hongyuan Deng

Department of Natural Resource Sciences, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.

Abstract

Soil microbial communities are responsive to biochar amendments. As the residence time of biochar in soil is expected to be hundreds to thousands of years, the changes in microbial community structure and functions could persist for a long period of time. Given that biochar is being applied as a soil amendment in many parts of the world, the long-term consequences for soil microbial communities need to be considered. The objective of this review is to document how biochar creates new habitats and changes the soil environment for microorganisms, which may lead to changes in microbial abundance, community structure and activities. Our meta-analysis revealed that slow pyrolyzed biochars produced from various feedstocks at temperatures from 300 °C to 600 °C consistently increased some physico-chemical properties (i.e., pH, cation exchange capacity and aggregation) and microbial parameters (i.e., abundance and community structure of microorganisms) in a vast number of soils during short (≤90 days) laboratory incubations and longer (1–3 years) field studies. The biochar-mediated changes in soil physico-chemical and biological properties appeared to be a function of soil texture and biochar type based on its feedstock and production temperature, which determines key biochar characteristics such as surface area, porosity and pH. Biochars derived from manure or crop residue feedstocks tend to promote microbial abundance more than wood-derived biochars. Biochars derived from wood and other lignocellulosic-rich feedstocks tend to exhibit beneficial effects on soil microbial abundance later (≥60 days) than biochars from manure or crop residue feedstocks. Coarse textured soils tend to have less aggregation, lower microbial biomass and lower enzyme activities when amended with slow pyrolyzed biochars produced at high temperatures (>600 °C), but these biochars did not affect the physico-chemical and biological properties of clayey soils. Further research is needed to evaluate the magnitude of biochar influence on soil microbial abundance and activities considering (1) the biochar particle size, surface area, porosity, nutrient content and pH, and (2) the soil organic matter (SOM) content and microbial abundance of the soil matrix. Once the microbial activities in the biochar–soil system are understood, they can be manipulated through organic and inorganic fertilizer applications to sustain or improve agricultural crop production.

Keywords: Biochar production temperature; Pyrolysis feedstocks; Biochar–microbial interactions; Soil microbial biomass; Microbial community structure; pH; Texture.

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution