2 g
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Biotechnology & Biotechnological Equipment
Vol. 29 (2), 2015, Pages: 205-220

An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

Nur Royhaila Mohamad, Nur Haziqah Che Marzuki, Nor Aziah Buang, Fahrul Huyop & Roswanira Abdul Wahab

Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.

Abstract

The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies.

Keywords: enzymes, immobilization, entrapment, surface analysis, nanoscale, atomic force spectroscopy, circular dichroism.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution