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Oil pollution is an environmental problem of increasing
importance. Hydrocarbon-degrading microorganisms, adapted
to grow and thrive in oil-containing environments, have an
important role in the biological treatment of this pollution.
One of the limiting factors in this process is the bioavailability
of many fractions of the oil. The hydrocarbon-degrading
microorganisms produce biosurfactants of diverse chemical
nature and molecular size. These surface-active materials
increase the surface area of hydrophobic water-insoluble
substrates and increase their bioavailability, thereby enhancing
the growth of bacteria and the rate of bioremediation.
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Introduction
Microorganisms produce a large variety of surface-active
materials, or surfactants for short. Bioemulsifiers are often
produced by bacteria capable of growing on hydrocarbons
and have been shown to stimulate the growth of these 
bacteria and to accelerate bioremediation. This review will
deal with the general types of bioemulsifiers and their 
presumed mode of action. More information can be found
in several recent reviews [1•,2••,3,4,5••,6].

Oil-degrading bacteria
Petroleum bioremediation is carried out by microorganisms
capable of utilizing hydrocarbons as a source of energy and
carbon [7,8,9•]. These microorganisms are ubiquitous in
nature and are capable of degrading the various types of
hydrocarbons — short-chain, long-chain and numerous
aromatic compounds, including polycyclic aromatic hydro-
carbons. All these compounds have low solubility in 
water. This fact, coupled to the fact that the first step in 
hydrocarbon degradation involves a membrane-bound
oxygenase, makes it essential for bacteria to come in direct
contact with the hydrocarbon substrates. One biological
strategy that can enhance contact between bacteria and
water-insoluble hydrocarbons is emulsification of the
hydrocarbon. Therefore, it is not surprising that bacteria
growing on petroleum usually produce potent emulsifiers.
These surfactants help to disperse the oil, increase the 
surface area for growth, and help detach the bacteria from
the oil droplets after the utilizable hydrocarbon has been
depleted [10].

Types of bacterial biosurfactants
Bacteria make low molecular weight molecules that efficiently
lower surface and interfacial tensions and high molecular
weight polymers that bind tightly to surfaces [2••,3,4,11••].

The low molecular weight biosurfactants are generally 
glycolipids in which carbohydrates are attached to a 
long-chain aliphatic acid or lipopeptides. Glycolipid
bioemulsifiers, such as rhamnolipids, trehalose lipids and
sophorolipids, are disaccharides that are acylated with
long-chain fatty acids or hydroxy fatty acids. One of the
best-studied glycolipids is rhamnolipid, produced by 
several species of Pseudomonads, which consists of two
moles of rhamnose and two moles of β-hydroxydecanoic
acid [12]. Recently, a new class of glycolipids, glucose
lipids, produced by Alcanivorax borkumensis has been
described [13–15]. These consist of an anionic glucose
lipid with a tetrameric oxyacyl sidechain.

The high molecular weight bacterial surfactants are 
produced by a large number of bacterial species from 
different genera and are composed of polysaccharides, 
proteins, lipopolysaccharides, lipoproteins or complex 
mixtures of these biopolymers. The high molecular weight
surfactants are less effective in reducing interfacial tension,
but are efficient at coating the oil droplets and preventing
their coalescence. These are highly efficient emulsifiers
that work at low concentrations (0.01%–0.001%), representing
emulsifier-to-hydrocarbon ratios of 1:100–1:1000. These
high molecular weight bioemulsifiers exhibit considerable
substrate specificity. For example, some emulsify efficiently
mixtures of aliphatic and aromatic (or cyclic alkane) 
hydrocarbons, but will not emulsify pure aliphatic, aromatic
or cyclic hydrocarbons; others can also emulsify pure 
hydrocarbons but only of a high molecular weight. The
best-studied biosurfactants are the bioemulsans produced
by different species of Acinetobacter [16]. Among them is
the emulsan from Acinetobacter RAG-1, which is a complex
of an anionic heteropolysaccharide and protein whose 
surface activity results from the presence of fatty acids that
are attached to the polysaccharide backbone via O-ester
and N-acyl linkages. Acinetobacter calcoaceticus BD4, initially
isolated and characterized by Taylor and Juni [17], produces
a surface-active extracellular polysaccharide–protein 
complex. Alasan, produced by a strain of Acinetobacter
radioresistens, is a complex of an anionic polysaccharide and
protein with a molecular weight of approximately 106 Da
[18]. The polysaccharide component of alasan is unusual 
in that it contains covalently bound alanine. The protein
component of alasan appears to play an important role in
both the structure and activity of the complex [19,20].
Recently, one of the alasan proteins, with an apparent 
molecular weight of 45 kDa, was studied at the molecular
level. This protein has an amino acid sequence homologous
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to that of Escherichia coli OmpA and is highly effective in
stabilizing oil-in-water emulsions and in solubilizing hydro-
carbons, including polycyclic aromatic hydrocarbons [21•].

Production of bacterial biosurfactants
The bioemulsifiers are usually produced as cultures reach
the stationary stage of growth. In several cases it was
shown that emulsifier production is induced by molecular
signals involved in quorum sensing. This regulatory 
feature appears to be general, and probably applies to the
production of both low and high molecular weight emulsifiers,
as in all cases emulsifier production is concurrent with the
increase in cell density and the onset of the stationary
phase of growth [3,22–28].

Because oil-degrading bacteria can utilize only a limited
group of hydrocarbons, bacteria attached and growing on an
oil droplet become nutrient-starved once this group of hydro-
carbons is depleted. If the biosurfactant is cell-bound it can
cause the microbial cell surface to become more hydro-
phobic, depending on its orientation. For example, the cell-
surface hydrophobicity of Pseudomonas aeruginosa was greatly
increased by the presence of cell-bound rhamnolipid [29],
whereas the cell-surface hydrophobicity of Acinetobacter
strains was reduced by the presence of its cell-bound emul-
sifier [30]. These data suggest that microorganisms can use
their biosurfactants to regulate their cell-surface properties to
attach or detach from surfaces according to need. This has
been demonstrated for A. calcoaceticus RAG-1 growing on
crude oil [10]. During exponential growth, emulsan is cell-
bound in the form of a minicapsule. This bacterium utilizes
only relatively long chain n-alkanes for growth. After these
compounds are utilized, RAG-1 becomes starved, although it
is still attached to the oil droplet, which is enriched in 
aromatics and cyclic paraffins. Starvation of RAG-1 causes
release of the minicapsule of emulsan. It was shown that this
released emulsan forms a polymeric film on the n-alkane-
depleted oil droplet, thereby desorbing the starved cell [30].
In effect, the ‘emulsifier’ frees the cell to find fresh substrate.
At the same time, the depleted oil droplet has been ‘marked’
as used, because it now has a hydrophilic outer surface to
which the bacterium cannot attach. The detachment of 
bacteria from the depleted oil drop enables them to move to
other drops where they metabolize the specific group of 
utilizable hydrocarbons. Therefore, detachment of bacteria
from oil drops results in a more efficient bioremediation.

Involvement of biosurfactants in oil
bioremediation
There are at least two ways in which biosurfactants are
involved in bioremediation: increasing the surface area of
hydrophobic water-insoluble substrates and increasing the
bioavailability of hydrophobic compounds.

Increasing the surface area of hydrophobic water-
insoluble substrates
For bacteria growing on hydrocarbons, the growth rate can
be limited by the interfacial surface area between water

and oil [31]. When the surface area becomes limiting, 
biomass increases arithmetically rather than exponentially.
The evidence that emulsification is a natural process
brought about by extracellular agents is indirect, and there
are certain conceptual difficulties in understanding how
emulsification can provide an (evolutionary) advantage for
the microorganism producing the emulsifier. Stated briefly,
emulsification is a cell-density-dependent phenomenon:
that is, the greater the number of cells, the higher the 
concentration of extracellular product. The concentration
of cells in an open system, such as an oil-polluted body of
water, never reaches a high enough value to effectively
emulsify oil. Furthermore, any emulsified oil would 
disperse in the water and not be more available to the
emulsifier-producing strain than to competing microorganisms.
One way to reconcile the existing data with these theoretical
considerations is to suggest that the emulsifying agents do
play a natural role in oil degradation, but not in producing
macroscopic emulsions in the bulk liquid. If emulsion
occurs at, or very close to, the cell surface and no mixing
occurs at the microscopic level, then each cluster of cells
creates its own microenvironment and no overall cell-density
dependence would be expected.

Increasing the bioavailability of hydrophobic
water-insoluble substrates
The low water solubility of many hydrocarbons, especially
the polycyclic aromatic hydrocarbons (PAHs), is believed
to limit their availability to microorganisms, which is a
potential problem for bioremediation of contaminated
sites. It has been assumed that surfactants would enhance
the bioavailability of hydrophobic compounds. Several
non-biological surfactants have been studied, and both
negative and positive effects of the surfactants on
biodegradation were observed. For example, the addition
of the surfactant Tergitol NP-10 increased the dissolution
rate of solid-phase phenanthrene and resulted in an overall
increase in the growth of a strain of Pseudomonas stutzeri
[32]. A similar effect was obtained by the addition of
Tween 80 to two Sphingomonas strains — the rate of fluor-
anthene mineralization was almost doubled. By contrast,
the same surfactant inhibited the rate of fluoranthene 
mineralization by two strains of Mycobacterium [33], and no
stimulation was observed in other studies using several
surfactants [34,35].

Biosurfactants are more effective than chemical surfactants
in increasing the bioavailability of hydrophobic compounds.
In addition, they are selective, environmentally friendly,
and generally less stable than most synthetic surfactants.
The high molecular weight bioemulsifier Alasan was
recently shown to significantly increase the rate of
biodegradation of several PAHs [11••].

One of the major reasons for the prolonged persistence of
high molecular weight hydrophobic compounds is their
low water solubility, which increases their sorption to 
surfaces and limits their availability to biodegrading
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microorganisms. When organic molecules are bound 
irreversibly to surfaces, biodegradation is inhibited [36].
Biosurfactants can enhance growth on bound substrates by
desorbing them from surfaces or by increasing their apparent
water solubility [37]. Surfactants that lower interfacial 
tension dramatically are particularly effective in mobilizing
bound hydrophobic molecules and making them available
for biodegradation. Low molecular weight biosurfactants
that have low critical micelle concentrations (CMCs)
increase the apparent solubility of hydrocarbons by 
incorporating them into the hydrophobic cavities of
micelles [38]. Data have been reported which indicate that
biosurfactants can stimulate, inhibit or have no effect on
biodegradation of hydrocarbons, as reviewed by Bruheim
[34]. In this regard, Arino [39] reported that a rhamnolipid-
producing strain of P. aeruginosa is involved in the
degradation of PAHs by a bacterial community. Much less
is known on how polymeric biosurfactants increase 
apparent solubilities of hydrophobic compounds. Recently,
it has been demonstrated that alasan increases the apparent
solubilities of PAHs 5–20-fold and significantly increases
their rate of biodegradation [11••,40••].

Utilizing biosurfactants for bioremediation
Bioremediation involves the acceleration of natural
biodegradative processes in contaminated environments by
improving the availability of materials (e.g. nutrients and
oxygen), conditions (e.g. pH and moisture content), and
prevailing microorganisms. Thus, bioremediation usually
consists of the application of nitrogenous and phosphorous
fertilizers, adjusting the pH and water content, if necessary,
supplying air and often adding bacteria. The addition of
emulsifiers is advantageous when bacterial growth is slow
(e.g. at cold temperatures or in the presence of high concen-
trations of pollutants) or when the pollutants consist of
compounds that are difficult to degrade, such as PAHs.
Bioemulsifiers can be applied as an additive to stimulate the
bioremediation process; however, with advanced genetic
technologies it is expected that the increase in bioemulsifier
concentration during bioremediation would be achieved by
the addition of bacteria that overproduce bioemulsifiers.
This approach has been recently used successfully in the
cleaning of oil pipes. Cultures of A. radioresistens [18], which
produce the bioemulsifier alasan but are unable to use
hydrocarbons as a carbon source, were added to a mixture of
oil-degrading bacteria to enhance oil bioremediation
(EZ Ron, E Rosenberg, unpublished results).

Bacteria that overproduce bioemulsifiers can also participate
in oil degradation. Alternatively, they can function in a 
bacterial consortium, supplying the emulsifier for other
bacteria that carry out the degradation of the hydrocarbons.
In this latter case, the bioemulsifier can diffuse in the soil
or can even be transferred to the other bacteria on close
contact, such as in biofilms. Recently, horizontal transfer of
capsule polysaccharide has been demonstrated in bacteria
[41•], resulting in bacteria coated with emulsifying 
polysaccharide capsule produced by bacteria of another

species. The effect of these phenomena on oil bioremediation
remains to be further investigated. Clearly, optimization of
this process would involve selecting the best oil-degrading
microorganisms, the most suitable biosurfactant, the best
bioemulsifier producers and the most effective combination
of these.

Conclusions
Biosurfactants are produced by a variety of oil-degrading
microorganisms. These biosurfactants can be of low mole-
cular weight, acting by decreasing the oil–water interfacial
tension, or high molecular weight and act as biodispersants
by preventing coalescence of oil drops in water. The high
molecular weight bioemulsifiers are heteropolysaccharides,
and the active components are lipids or proteins. The
activity of bacterial biosurfactants in bioremediation stems
from their ability to increase the surface area of hydrophobic
water-insoluble substrates and to increase the solubility
and bioavailability of hydrocarbons. They can be added to
bioremediation processes as purified materials or in the
form of bioemulsifier-overproducing bacteria. In either
case, they can stimulate the growth of oil-degrading bacteria
and improve their ability to utilize hydrocarbons.
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